Processing math: 100%

27 dicembre 2022

Gruppi cancellabili

Un gruppo K si dice cancellabile se, per ogni coppia di gruppi G, H

G \times K \cong H × K implica G \cong H. 

Si noti che non si può in generale passare al quoziente per K in ambo i termini di G \times K \cong H × K: il motivo è che non è detto che il dato isomorfismo mandi il sottogruppo \{1\} \times K di G \times K nel sottogruppo \{1\} \times K di H \times K

Infatti, esistono gruppi che non sono cancellabili. La più semplice famiglia di controesempi si ottiene prendendo come G un gruppo arbitrario e ponendo H=G \times G e K=prodotto numerabile infinito di copie di G

In questo esempio K non è finitamente generato, ma esistono anche esempi finitamente presentati: addirittura, si dimostra che \mathbb{Z} non è cancellabile in generale [1].

Invece, ogni gruppo finito K è cancellabile. Questo risultato è dovuto a Hirshon [2], si veda anche la dimostrazione elementare data in [3].

Riferimenti.


[2] R. Hirshon, On Cancellation in Groups, The American Mathematical Monthly, Vol. 76, No. 9 (1969), pp. 1037-1039

10 dicembre 2022

Happy hour

Un'infinità numerabile di matematici entra in un bar, dove c'è l'happy hour "Drink a 1,20 euro". Il primo ordina un drink, il secondo due drink, il terzo tre drink e così via. Sospirando, il barista si rivolge a uno di loro e gli fa: "Ramanujan, te l'ho già spiegato: dovete pagare come tutti, non te li do 'sti 10 centesimi!"