Processing math: 100%

12 ottobre 2023

An overkill way to recover the Taylor expansion of e^x

Let us consider the linear operator of Banach spaces F \colon C[0, \, 1/2] \to C[0, \, 1/2], \quad F(f(x)):= \int_0^x f(t)dt. Then the identity \int_0^x e^tdt=e^x-1 can be rewritten as (I-F)(e^x)=1. \quad (\sharp) The operator F is bounded and we have ||F|| = \sup_{f \in C[0, \, 1/2]} \frac{||F(f)||}{||f||} \leq \frac{1/2 \, ||f||}{||f||} = \frac{1}{2} <1. This implies that I-F is invertible as a bounded linear operator and  moreover (I-F)^{-1} = \sum_{k=0}^{+ \infty} F^k. Substituting in (\sharp), we get e^x=(I-F)^{-1}(1)=\left(\sum_{k=0}^{+ \infty} F^k \right) (1) = \sum_{k=0}^{+ \infty} F^k(1) = \sum_{k=0} ^{+ \infty}\frac{x^k}{k!}, which is the well-known Taylor series expansion of  e^x.

Nessun commento:

Posta un commento