19 aprile 2019

La costante di Apéry

È ben noto che i valori della funzione zeta di Riemann calcolati negli interi positivi pari possono essere espressi in termini dei numeri di Bernoulli $B_n$, e più precisamente che vale l'identità
\begin{equation*}
 \zeta(2n) = (-1)^{n+1} B_{2n} \frac{(2 \pi) ^{2n}}{2 (2n)!}.
\end{equation*} Siccome i numeri di Bernoulli sono razionali, segue che i valori $\zeta(2n)$ sono multipli razionali di potenze di $\pi$, in particolare per $n \geq1$ sono tutti numeri trascendenti. I primi valori di $\zeta(2n)$ sono i seguenti:

$\zeta(0) = -1/2$
$\zeta(2) = \pi^2/6$ (un celebre risultato d Eulero noto come identità di Basilea)
$\zeta(4) = \pi^4/90$
$\zeta(6) = \pi^6/945$

e, in generale, gli interi $a_n, \, b_n$ che compaiono nell'identità
\begin{equation*}
a_n \zeta(2n) = b_n \pi^{2n}
\end{equation*} sono rispettivamente gli elementi delle successioni OEIS A002432 e A046988.

Per quanto riguarda i valori $\zeta(2n+1)$ della funzione zeta calcolata negli interi positivi dispari, si sa invece molto di meno. 

Il valore $\zeta(1)$ corrisponde alla somma della serie armonica $$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots,$$ che è divergente, e infatti $\zeta(s)$ ha un polo in $s=1$.  

Il valore successivo $$\zeta(3) = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \ldots \simeq 1.20205 $$ è detto costante di Apéry, in onore del matematico francese R. Apéry che nel 1978 ne dimostrò l'irrazionalità [A79]. Dimostrazioni più semplici vennero in seguito proposte da F. Beuker [B79] e W. Zudilin [Z02]. Non è noto al momento se la costante di Apéry sia un numero trascendente. 

Il reciproco $1/\zeta(3) \simeq 0.831912 \ldots$ rappresenta la probabilità che tre numeri "scelti a caso" siano relativamente primi. Curiosamente, il valore $\zeta(3)$ compare anche in Elettrodinamica Quantistica, nel calcolo del momento angolare dell'elettrone.

Non è noto un analogo del Teorema di Apéry per altri valori del tipo $\zeta(2n+1)$, ma si hanno alcuni risultati parziali. Sappiamo ad esempio che infiniti tali valori sono irrazionali [R00], e che almeno uno fra $\zeta(5)$, $\zeta(7)$, $\zeta(9)$, $\zeta(11)$ deve essere irrazionale [Z01]

Riferimenti.

[A79] R. Apéry: Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque 61: 11–13 (1979).
[B79] F. Beuker: A note on the irrationality of $\zeta(2)$ et $\zeta(3)$, Bull. London Math. Soc. 11 (3) (1979), 268–272.
[Z02] W. Zudilin: An elementary proof of Apéry's theorem, arXiv:math/0202159 (2002).
[R00] T. Rivoal: La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, Comptes Rendus de l'Académie des Sciences, Série I, 331 (4) (2000): 267–270.
[Z01] W. Zudilin: One of the numbers $\zeta(5), \, \zeta(7), \, \zeta(9), \, \zeta(11)$ must be irrational, Russ. Math. Surv., 56 (4) (2001), 774–776.

2 commenti:

  1. Articolo molto interessante, volevo solo far notare 2 errori di battitura:
    alla riga 5, dovrebbe essere "n>=1", in quanto per n=1 abbiamo $\zeta(2) = \pi^2/6$, che è un numero trascendente
    poco più in basso, si dovrebbe avere $\zeta(6) = \pi^6/945$, anziché $\zeta(6) = \pi^4/945$.

    RispondiElimina