Considerato l’insieme $M(n)$ dei numeri naturali minori o uguali a $n$, possiamo considerare la sua partizione formata dai due sottoinsiemi $O(n)$ e $E(n)$, dove $O(n)$ sono gli elementi di $M(n)$ aventi un numero dispari di fattori primi (contati con molteplicità) e $E(n)$ sono quelli aventi un numero pari di fattori primi.
Nel 1919, il matematico ungherese G. Pólya congetturò [1] che $O(n)$ è sempre più numeroso di $E(n)$, ossia che “più della metà” dei numeri naturali possiede un numero dispari di fattori primi distinti. Questa divenne nota come congettura di Pólya [2].
In termini tecnici, la congettura di Polya si può esprimere come $$L(n) = |E(n)|-|O(n)|= \sum_{k=1}^n \lambda(k) \leq 0,$$ dove $\lambda(k)$ è la funzione di Liouville, che vale $1$ se $k$ ha un numero pari di fattori primi (sempre contati con molteplicità) e $-1$ altrimenti.
La congettura di Pólya è verificata fino a valori di $n$ superiori a $900$ milioni. Tuttavia, essa venne confutata da C. B. Haselgrove nel 1958 [3], e il primo controesempio esplicito ($n=906180359$, per il quale $L(n)=1$) venne esibito da R. S. Lehman nel 1960 [4]. Oggi si sa che il più piccolo controesempio è $n = 906150257$, come dimostrato da M. Tanaka nel 1980 [5].
Questo è un tipico esempio che mostra come la mera evidenza numerica di un dato risultato aritmetico, anche per numeri che ci sembrano piuttosto grandi, implica ben poco riguardo la sua validità generale.
I primi valori di $n$ per i quali $L(n)=0$ sono $$n=2, \, 4, \, 6, \, 10, \,16, \, 26, \, 40, \, 96, \, 586, \, 906150256, \ldots$$
vedi la successione OEIS A028488. Recentemente, è stato dimostrato che la funzione $L(n)$ cambia segno infinite volte, vedi [6] e [7].
G. Pólya (circa 1973, fonte Wikipedia) |
Riferimenti.
[1] G. Pólya: Verschiedene Bemerkungen zur Zahlentheorie, Jahresber. deutschen Math.-Verein. 28 (1919), 31-40.
[3] C. B. Haselgrove: A Disproof of a Conjecture of Pólya, Mathematika 5 (1958), 141-145.
[4] R. S. Lehman: On Liouville's Function, Math. Comput. 14 (1960), 311-320.
[5] M. Tanaka: A Numerical Investigation on Cumulative Sum of the Liouville Function, Tokyo J. Math. 3 (1980), 187-189.
[6] P. Borwein, R. Ferguson, M. J. Mossinghoff: Sign Changes in Sums of the Liouville Function, Mathematics of Computation 77 (2008), no. 263, 1681–1694.
[7] P. Humphries: The distribution of weighted sums of the Liouville function and Pólya’s conjecture, Journal of Number Theory 133 (2013), 545–582.
Nessun commento:
Posta un commento