Congettura. Ogni curva di Jordan (curva piana semplice chiusa) contiene quattro punti che formano i vertici di un quadrato.
Da allora, essa è nota come Congettura di Toepliz, o Congettura del quadrato inscritto [W], ed è al momento ancora aperta nel caso generale. Risultati di Arnold Emch [E16] e Lev Schnirelmann [S44] implicano che essa è vera per curve regolari a tratti, ad esempio per i poligoni. Si noti che non è detto che il quadrato inscritto sia unico: si pensi ad una circonferenza, che contiene infiniti quadrati inscritti.
Come spesso accade con le curve di Jordan, il caso più difficile da trattare è quello delle curve continue ma che non possiedono regolarità maggiore, ad esempio i frattali come la curva di Koch. In tal caso, si potrebbe pensare di approcciare la congettura approssimando la curva con una successione di curve regolari a tratti e passando al limite di una successione di quadrati inscritti in queste ultime; purtroppo, la tecnica non funziona, in quanto il limite può essere un quadrato di lato zero, ossia un punto.
Esistono diverse varianti della congettura di Toepliz, che si ottengono sostituendo il quadrato con altri tipi di poligoni. È noto ad esempio che ogni curva di Jordan contiene un rettangolo. Di recente, Joshua Evan Greene and Andrew Lobb [GL20] hanno generalizzato i risultati di Emch e Schnirelmann in questo caso, ottenendo il seguente
Teorema. Data una curva di Jordan liscia $C$ e un rettangolo $R$ nel piano euclideo, esistono quattro punti su $C$ che sono i vertici di un rettangolo simile a $R$.
La storia di questo risultato, ottenuto durante il periodo di quarantena per la pandemia Covid-19, è stata raccontata da Kevin Hartnett in un articolo su Quanta Magazine [H20], a cui si rimanda il lettore per maggiori dettagli.
Fonte immagine: Wikipedia |
Riferimenti.
[E16] A. Emch: On some properties of the medians of closed continuous curves formed by analytic arcs, American Journal of Mathematics, 38 (1) (1916)
[GL20] J. E: Greene, A. Lobb: The rectangular peg problem, arXiv:2005.09193
[H20] K. Hartnett: New Geometric Perspective Cracks Old Problem About Rectangles, Quanta Magazine (June 2020).
[S44] L. G. Schnirelmann: On certain geometrical properties of closed curves, Akademiya Nauk SSSR I Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk, 10: 34–44 (1944)
[T11] O. Toeplitz: Über einige Aufgaben der Analysis situs, Verhandlungen der Schweizerischen Naturforschenden Gesellschaft (in German), 94: 197 (1911)