Per $G=S_n$, il gruppo simmetrico su $n$ elementi, sussiste il seguente sorprendente risultato.
La prima parte di questo teorema si basa su un semplice argomento combinatorio, vedi [Se40]. Per quanto riguarda la seconda parte, la scoperta del fatto che $S_6$ rappresenti un caso eccezionale per il gruppo degli automorfismi è dovuta a O. Hölder [H895]. Oggi sono note varie dimostrazioni, e qui riporteremo quella presentata in [Rot95].
- Se $n \neq 6$, allora ogni automorfismo di $S_n$ è interno, in altre parole $\mathrm{Inn}(S_n)=\mathrm{Aut}(S_n)$ e $\mathrm{Out}(S_n)= \{1\}$.
- $\mathrm{Inn}(S_6)$ ha indice $2$ in $\mathrm{Aut}(S_6)$, dunque $\mathrm{Out}(S_6)=\mathbb{Z}_2$.
Innanzitutto, si dimostra che esiste un sottogruppo transitivo $K$ di $S_6$ avente ordine $120$ e che non contiene trasposizioni. Ciò segue dal fatto che $S_5$ agisce transitivamente per coniugio sui sei $5$-Sylow di $S_6$, dando un monomorfismo $S_5 \to S_6$. Dunque $K$ è una "copia esotica” di $S_5$ in $S_6$ (si noti che le copie date dalle immersioni naturali fissano un elemento, dunque non sono transitive).
Dopodiché, si fa vedere che $K$ ha esattamente sei coniugati in $S_6$, e che pertanto l’azione di coniugio di $S_6$ sull’insieme $X$ di tali coniugati fornisce un omomorfismo di gruppi $S_6 \to \mathrm{Perm}(X)$; identificando $X$ con l’insieme $\{1, \ldots, 6\}$, ciò dà un omomorfismo
$f \colon S_6 \to S_6$, che risulta essere un automorfismo.
L’automorfismo $f$ non è interno, dato che non manda trasposizioni in trasposizioni, mentre ogni automorfismo interno preserva la struttura ciclica. Ciò mostra che $\mathrm{Out}(S_6)$ è non banale. La dimostrazione viene quindi conclusa facendo vedere che $f^2$ è interno e che non esistono altri automorfismi non-interni, a meno di composizione con elementi di $\mathrm{Inn}(G)$.
Per ulteriori dettagli, altre costruzioni e riferimenti alla letteratura, il lettore può consultare la corrispondente pagina Wikipedia.
Riferimenti.
[H895] O. Hölder : Bildung zusammengesetzter Gruppen, Mathematische Annalen 46 (1895).
[Rot95] J. Rotman: An introduction to the theory of groups, Springer 1995.
[Se40]I E. Segal: The automorphisms of the symmetric group, Bull. Amer. Math. Soc. 46 (1940), no. 6.
Nessun commento:
Posta un commento