Mathematics is the part of physics where experiments are cheap.
Source:
On teaching mathematics, Uspekhi Mat. Nauk 53 (1998), no. 1, 229-234;
English translation: Russian Math. Surveys 53 (1998), no. 1, 229-236.
Teorema di André [A1881]. La somma della serie $$A(x) = \sum_{n=1}^{+ \infty} A_n \frac{x^n}{n!}$$ è data da $$A(x)=\tan\left( \frac{\pi}{4}+\frac{x}{2}\right)=\sec x + \tan x.$$ Dunque il suo raggio di convergenza è $\frac{\pi}{2}$, da cui si ottiene il comportamento asintotico $$A_n \sim 2 \left(\frac{2}{\pi}\right)^{n + 1} \cdot n!\,. $$I valori di $A_n$ sono tabulati nella successione OEIS A000111, i cui primi elementi sono $$1, \, 1, \, 2, \, 5, \, 16, \, 61, \, 272, \, 1385, \, 7936, \, 50521, \, \dots$$ È bene notare che la definizione di permutazione alternante data in OEIS è lievemente diversa dalla nostra, dato che vengono ammesse anche le permutazioni tali che $$\sigma(1) > \sigma(2), \quad \sigma(2) < \sigma(3), \quad \sigma(3) > \sigma(4) $$ e così via. Con questa definizione, il numero di permutazioni alternanti è $2A_n$, e i corrispondenti valori sono tabulati in OEIS A001250.
EUREKA num(ber) = △ + △ + △Gauss aveva appena scoperto che ogni numero naturale si può scrivere come somma di tre numeri triangolari.
Fonte: Wikipedia. |
Teorema. Ogni quadrilatero (anche non convesso) può essere usato per tassellare il piano.Dimostrazione. Si parte da un quadrilatero ABCD, e si ruota di 180 gradi rispetto al punto medio di uno dei lati. Si ripete la costruzione quattro volte, usando ogni volta il punto medio di un lato come centro di rotazione. Siccome la somma degli angoli interni di un quadrilatero è 360 gradi, alla fine della procedura la figura si chiude senza pezzi mancanti o sovrapposizioni, e il quadrilatero tassella. $\square$
Fonte: Math & the art of MC Escher |
Dati due interi $a$, $b$ che soddisfano una data proprietà $\mathsf{P}$, si dimostri che una certa espressione razionale $R(a, \, b)$ soddisfa una ulteriore proprietà $\mathsf{Q}$.
Problema n. 6, IMO 1988. Siamo $a$, $b$ interi positivi tali che $ab+1$ divida $a^2+b^2$. Si dimostri che $\frac{a^2+b^2}{ab+1}$ è un quadrato perfetto.
Source: Wikimedia Commons |
Teorema (Cayley-Bacharach). Sia $k$ un campo algebricamente chiuso e si considerino nove punti $p_1, \ldots, p_9$ nel piano proiettivo $\mathbb{P}^2(k)$ che siano l'intersezione di due cubiche $C_1$ e $C_2$. Allora, ogni cubica $C$ che passi per otto qualsiasi dei punti $p_i$ passa necessariamante anche per il nono.
Ogni cubica (in nero) passante per otto dei nove punti di intersezione delle cubiche blu e rossa passa anche per il nono. Fonte immagine: Wikipedia |